Java8异步编程之CompletableFuture源码解读
【.com原创稿件】
一、异步源码引言
一说到异步任务,编程很多人上来咔咔新建个线程池。解读为了防止线程数量肆虐,异步源码一般还会考虑使用单例模式创建线程池,编程具体使用方法大都如下面的解读代码所示:
@Test publicvoiddemo1() throwsExecutionException, InterruptedException { ExecutorServiceexecutorService=Executors.newFixedThreadPool(5); Future
} }); System.out.println(future1.get()); executorService.execute(newRunnable() { @Overridepublicvoidrun() { System.out.println(Thread.currentThread().getName()); } }); }经常使用 JavaScript 的同学相信对于异步回调的用法相当熟悉了,毕竟 JavaScript 拥有“回调地狱”的异步源码美誉。
我们大 Java 又开启了新一轮模仿之旅。编程
java.util.concurrent 包新增了 CompletableFuture 类可以实现类似 JavaScript 的解读连续回调。
二、异步源码两种基本用法
先来看下 CompletableFuture 的编程两种基本⽤法,代码如下:
@Test public void index1() throws ExecutionException,解读 InterruptedException { CompletableFuture completableFuture1 = CompletableFuture.supplyAsync(() -> Thread.currentThread().getName()); CompletableFuture completableFuture2 = CompletableFuture.runAsync(() -> Thread.currentThread().getName()); System.out.println(completableFuture1.get()); System.out.println(completableFuture2.get()); }打印输出:
ForkJoinPool.commonPool-worker-1 null初看代码,第一反应是异步源码代码简洁。直接调用 CompletableFuture 类的编程静态方法,提交任务方法就完事了。解读但是,随之而来的疑问就是,异步任务执行的背后是一套什么逻辑呢?是一对一使用newThread()还是依赖线程池去执行的呢。高防服务器
三、探索线程池原理
翻阅 CompletableFuture 类的源码,我们找到答案。关键代码如下:
private static final boolean useCommonPool = (ForkJoinPool.getCommonPoolParallelism() > 1); /** * Default executor -- ForkJoinPool.commonPool() unless it cannot * support parallelism. */ private static final Executor asyncPool = useCommonPool ? ForkJoinPool.commonPool() : new ThreadPerTaskExecutor();可以看到 CompletableFuture 类默认使⽤的是 ForkJoinPool.commonPool() ⽅法返回的线程池。当 然啦,前提是 ForkJoinPool 线程池的数量⼤于 1 。否则,则使⽤ CompletableFuture 类⾃定义的 ThreadPerTaskExecutor 线程池。 ThreadPerTaskExecutor 线程池的实现逻辑⾮常简单,⼀⾏代码简单实现了 Executor 接⼝,内部执⾏ 逻辑是⼀条任务对应⼀条线程。代码如下:
/** Fallback if ForkJoinPool.commonPool() cannot support parallelism */ static final class ThreadPerTaskExecutor implements Executor { public void execute(Runnable r) { new Thread(r).start(); } }四、两种异步接⼝
之前我们使⽤线程池执⾏异步任务时,当不需要任务执⾏完毕后返回结果的,我们都是实现 Runnable 接⼝。⽽当需要实现返回值时,我们使⽤的则是 Callable 接⼝。 同理,使⽤ CompletableFuture 类的静态⽅法执⾏异步任务时,b2b供应网不需要返回结果的也是实现 Runnable 接⼝。⽽当需要实现返回值时,我们使⽤的则是 Supplier 接⼝。其实,Callable 接⼝和 Supplier 接⼝ 并没有什么区别。 接下来,我们来分析⼀下 CompletableFuture 是如何实现异步任务执⾏的。
runAsync
CompletableFuture 执⾏⽆返回值任务的是 runAsync() ⽅法。该⽅法的关键执⾏代码如下:
static CompletableFuture<Void> asyncRunStage(Executor e, Runnable f) { if (f == null) throw new NullPointerException(); CompletableFuture<Void> d = new CompletableFuture<Void>(); e.execute(new AsyncRun(d, f)); return d; }可以看到,该⽅法将 Runnable 实例作为参数封装⾄ AsyncRun 类。实际上, AsyncRun 类是对 Runnable 接⼝的进⼀步封装。实际上,AsyncRun 类也是实现了 Runnable 接⼝。观察下⽅ AsyncRun 类的源码,可以看到 AsyncRun 类的 run() ⽅法中调⽤了 Runnable 参数的 run() ⽅法。
public void run() { CompletableFuture<Void> d; Runnable f; if ((d = dep) != null && (f = fn) != null) { dep = null; fn = null; if (d.result == null) { try { f.run(); d.completeNull(); } catch (Throwable ex) { d.completeThrowable(ex); } } d.postComplete(); } }当提交的任务执⾏完毕后,香港云服务器即 f.run() ⽅法执⾏完毕。调⽤ d.completeNull() ⽅法设置任务执⾏结 果为空。代码如下:
/** The encoding of the null value. */ static final AltResult NIL = new AltResult(null); /** Completes with the null value, unless already completed. */ final boolean completeNull() { return UNSAFE.compareAndSwapObject(this, RESULT, null, NIL); }可以看到,对于任务返回值为 null 的执⾏结果,被封装为 new AltResult(null) 对象。⽽且,还是 调⽤的 CAS 本地⽅法实现了原⼦操作。 为什么需要对 null 值进⾏单独封装呢?观察 get() ⽅法的源码:
public T get() throws InterruptedException, ExecutionException { Object r; return reportGet((r = result) == null ? waitingGet(true) : r); }原来原因是便于使⽤ null 值区分异步任务是否执⾏完毕。 如果你对 CAS 不太了解的话,可以查阅 compareAndSwapObject ⽅法的四个参数的含义。该⽅法的参 数 RESULT 是什么呢?查看代码如下:
RESULT = u.objectFieldOffset(k.getDeclaredField("result"));原来,RESULT 是获取 CompletableFuture 对象中 result 字段的偏移地址。这个 result 字段⼜是啥 呢?就是任务执⾏完毕后的结果值。代码如下:
// Either the result or boxed AltResult volatile Object result;supplyAsync
CompletableFuture 执⾏有返回值任务的是 supplyAsync() ⽅法。该⽅法的关键执⾏代码如下:
static <U> CompletableFuture<U> asyncSupplyStage(Executor e, Supplier<U> f) { if (f == null) throw new NullPointerException(); CompletableFuture<U> d = new CompletableFuture<U>(); e.execute(new AsyncSupply<U>(d, f)); return d; }与 AsyncRun 类对 Runnable 接⼝的封装相同的是,AsyncSupply 类也是对 Runnable 接⼝的 run() ⽅ 法进⾏了⼀层封装。代码如下:
public void run() { CompletableFuture<T> d; Supplier<T> f; if ((d = dep) != null && (f = fn) != null) { dep = null; fn = null; if (d.result == null) { try { d.completeValue(f.get()); } catch (Throwable ex) { d.completeThrowable(ex); } } d.postComplete(); } }当异步任务执⾏完毕后,返回结果会经 d.completeValue() ⽅法进⾏封装。与 d.completeNull() ⽅ 法不同的是,该⽅法具有⼀个参数。代码如下:
/** Completes with a non-exceptional result, unless already completed. */ final boolean completeValue(T t) { return UNSAFE.compareAndSwapObject(this, RESULT, null, (t == null) ? NIL : t); }⽆论是类 AsyncRun 还是类 AsyncSupply ,run() ⽅法都会在执⾏结束之际调⽤ CompletableFuture 对象的 postComplete() ⽅法。顾名思义,该⽅法将通知后续回调函数的执⾏。
五、探究回调函数原理
前⾯我们提到了 CompletableFuture 具有连续回调的特性。举个例⼦:
@Test public void demo2() throws ExecutionException, InterruptedException { CompletableFuture<ArrayList> completableFuture = CompletableFuture.supplyAsync(() -> { System.out.println(Thread.currentThread().getName()); return new ArrayList(); }) .whenCompleteAsync((list, throwable) -> { System.out.println(Thread.currentThread().getName()); list.add(1); }) .whenCompleteAsync((list, throwable) -> { System.out.println(Thread.currentThread().getName()); list.add(2); }) .whenCompleteAsync((list, throwable) -> { System.out.println(Thread.currentThread().getName()); list.add(3); }); System.out.println(completableFuture.get()); }打印输出:
ForkJoinPool.commonPool-worker-1 ForkJoinPool.commonPool-worker-1 ForkJoinPool.commonPool-worker-1 ForkJoinPool.commonPool-worker-1 [1, 2, 3]上⾯的测试⽅法中,通过 supplyAsync ⽅法提交异步任务,当异步任务运⾏结束,对结果值添加三个回 调函数进⼀步处理。 观察打印输出,可以初步得出如下结论:
异步任务与回调函数均运⾏在同⼀个线程中。 回调函数的调⽤顺序与添加回调函数的顺序⼀致。那么问题来了,CompletableFuture 内部是如何处理连续回调函数的呢?
AsyncSupply
当我们提交异步任务时,等价于向线程池提交 AsyncSupply 对象或者 AsyncRun 对象。观察这两个类 的唯⼀构造⽅法都是相同的,代码如下:
AsyncSupply(CompletableFuture<T> dep, Supplier<T> fn) { this.dep = dep; this.fn = fn; }这就将 AsyncSupply 异步任务与返回给⽤户的 CompletableFuture 对象进⾏绑定,⽤于在执⾏结束后 回填结果到 CompletableFuture 对象,以及通知后续回调函数的运⾏。
Completion
回调函数均是 Completion 类的⼦类,抽取 Completion 类与⼦类的关键代码:
Completion next; CompletableFuture<V> dep; CompletableFuture<T> src; Function fn;Completion 类含有 next 字段,很明显是⼀个链表。 Completion 的⼦类含有两个 CompletableFuture 类型的参数,dep 是新建的、⽤于下⼀步的 CompletableFuture 对象,src 则是引⽤它的 CompletableFuture 对象。
当 Completion 执⾏完回调⽅法后,⼀般会返回 dep 对象,⽤于迭代遍历。
CompletableFuture
观察源码,CompletableFuture 主要包含下⾯两个参数:
volatile Object result; //结果 volatile Completion stack; //回调⽅法栈Completion 类型封装了回调⽅法,但为什么要起名为 stack (栈)呢? 因为 CompletableFuture 借助 Completion 的链表结构实现了栈。每当调⽤ CompletableFuture 对 象的 whenCompleteAsync() 或其它回调⽅法时,都会新建⼀个 Completion 对象,并压到栈顶。代码 如下:
final boolean tryPushStack(Completion c) { Completion h = stack; lazySetNext(c, h); return UNSAFE.compareAndSwapObject(this, STACK, h, c); }postComplete
回顾上⾯两种异步任务类的实现,当异步任务执⾏完毕之后,都会调⽤ postComplete() ⽅法通知回调 ⽅法的执⾏。代码如下:
final void postComplete() { CompletableFuture<?> f = this; Completion h; while ((h = f.stack) != null || (f != this && (h = (f = this).stack) != null)) { CompletableFuture<?> d; Completion t; if (f.casStack(h, t = h.next)) { if (t != null) { if (f != this) { pushStack(h); continue; } h.next = null; // detach } f = (d = h.tryFire(NESTED)) == null ? this : d; } } }这段代码是本⽂的核⼼部分,⼤致逻辑如下:
当异步任务执⾏结束后,CompletableFuture 会查看⾃身是否含有回调⽅法栈,如果含有,会通过 casStack() ⽅法拿出栈顶元素 h ,此时的栈顶是原来栈的第⼆位元素 t。如果 t 等于 null,那么直接 执⾏回调⽅法 h,并返回下⼀个 CompletableFuture 对象。然后⼀直迭代这个过程。 简化上述思路,我更想称其为通过 Completion 对象实现桥接的 CompletableFuture 链表,流程图如 下:
上⾯的过程是属于正常情况下的,也就是⼀个 CompletableFuture 对象只提交⼀个回调⽅法的情况。 如果我们使⽤同⼀个 CompletableFuture 对象连续调⽤多次回调⽅法,那么就会形成 Completion 栈。
你以为 Completion 栈内元素会依次调⽤,不会的。从代码中来看,当回调⽅法 t 不等于 null,有两种 情况:
情况 1:如果当前迭代到的 CompletableFuture 对象是 this (也就是 CompletableFuture 链表头), 会令 h.next = null ,因为 h.next 也就是 t 通过 CAS 的⽅式压到了 this 对象的 stack 栈顶。
情况 2:如果当前迭代到的 CompletableFuture 对象 f 不是 this (不是链表头)的话,会将回调函数 h 压⼊ this (链表头)的 stack 中。然后从链表头再次迭代遍历。这样下去,对象 f 中的回调⽅法栈假设 为 3-2-1,从 f 的栈顶推出再压⼊ this 的栈顶,顺序就变为了 1-2-3。这时候,情况就变成了第 1 种。
这样,当回调⽅法 t = h.next 等于 null 或者 f 等于 this 时,都会对栈顶的回调⽅法进⾏调⽤。
简单来说,就是将拥有多个回调⽅法的 CompletableFuture 对象的多余的回调⽅法移到到 this 对象的 栈内。
回调⽅法执⾏结束要么返回下⼀个 CompletableFuture 对象,要么返回 null 然后⼿动设置为 f = this, 再次从头遍历。
Async
回调函数的执⾏其实分为两种,区别在于带不带 Async 后缀。例如:
@Test public void demo3() throws ExecutionException, InterruptedException { CompletableFuture<ArrayList> completableFuture = CompletableFuture.supplyAsync(() -> { System.out.println(Thread.currentThread().getName()); return new ArrayList(); }) .whenComplete((arrayList, throwable) -> { System.out.println(Thread.currentThread().getName()); arrayList.add(1); }).whenCompleteAsync((arrayList, throwable) -> { System.out.println(Thread.currentThread().getName()); arrayList.add(2); }); System.out.println(completableFuture.get()); }打印输出:
ForkJoinPool.commonPool-worker-1 main ForkJoinPool.commonPool-worker-1 [1, 2]whenComplete() 和 whenCompleteAsync() ⽅法的区别在于是否在⽴即执⾏。源码如下:
private CompletableFuture<T> uniWhenCompleteStage( Executor e, BiConsumer<? super T, ? super Throwable> f) { if (f == null) throw new NullPointerException(); CompletableFuture<T> d = new CompletableFuture<T>(); if (e != null || !d.uniWhenComplete(this, f, null)) { UniWhenComplete<T> c = new UniWhenComplete<T>(e, d, this, f); push(c); c.tryFire(SYNC); } return d; }两个⽅法都是调⽤的 uniWhenCompleteStage() ,区别在于参数 Executor e 是否为 null。从⽽控制是 否调⽤ d.uniWhenComplete() ⽅法,该⽅法会判断 result 是否为 null,从⽽尝试是否⽴即执⾏该回调 ⽅法。若是 supplyAsync() ⽅法提交的异步任务耗时相对⻓⼀些,那么就不建议使⽤ whenComplete() ⽅法了。此时由 whenComplete() 和 whenCompleteAsync() ⽅法提交的异步任务都会由线程池执⾏。
本章小结
通过本章节的源码分析,我们明白了 Completion 之所以将自身设置为链表结构,是因为 CompletableFuture 需要借助 Completion 的链表结构实现栈。也明白了同一个 CompletableFuture 对象如果多次调用回调方法时执行顺序会与调用的顺序不符合。换言之,一个 CompletableFuture 对象只调用一个回调方法才是 CompletableFuture 设计的初衷,我们在编程中也可以利用这一特性来保证回调方法的调用顺序。
因篇幅有限,本文并没有分析更多的 CompletableFuture 源码,感兴趣的小伙伴可以自行查看。
六、用法集锦
异常处理
方法:
public CompletableFuture<T> exceptionally(Function<Throwable,? extends T> fn)示例:
@Test public void index2() throws ExecutionException, InterruptedException { CompletableFuture<Integer> completableFuture = CompletableFuture.supplyAsync(() -> 2 / 0) .exceptionally((e) -> { System.out.println(e.getMessage()); return 0; }); System.out.println(completableFuture.get()); }输出:
java.lang.ArithmeticException: / by zero 0任务完成后对结果的处理
方法:
public CompletableFuture<T> whenComplete(BiConsumer<? super T,? super Throwable> action) public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T,? super Throwable> action) public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T,? super Throwable> action, Executor executor)示例:
@Test public void index3() throws ExecutionException, InterruptedException { CompletableFuture<HashMap> completableFuture = CompletableFuture.supplyAsync(() -> new HashMap()) .whenComplete((map, throwable) -> { map.put("key1", "value1"); }); System.out.println(completableFuture.get()); }输出:
{ key=value}任务完成后对结果的转换
方法:
public <U> CompletableFuture<U> thenApply(Function<? super T,? extends U> fn) public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn) public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn, Executor executor)示例:
@Test public void index4() throws ExecutionException, InterruptedException { CompletableFuture<Integer> completableFuture = CompletableFuture.supplyAsync(() -> 2) .thenApply((r) -> r + 1); System.out.println(completableFuture.get()); }输出:
3任务完成后对结果的消费
方法:
public CompletableFuture<Void> thenAccept(Consumer<? super T> action) public CompletableFuture<Void> thenAcceptAsync(Consumer<? super T> action) public CompletableFuture<Void> thenAcceptAsync(Consumer<? super T> action, Executor executor)示例:
@Test public void index5() throws ExecutionException, InterruptedException { CompletableFuture<Void> completableFuture = CompletableFuture.supplyAsync(() -> 2) .thenAccept(System.out::println); System.out.println(completableFuture.get()); }输出:
2 null任务的组合(需等待上一个任务完成)
方法:
public <U> CompletableFuture<U> thenCompose(Function<? super T,? extends CompletionStage<U>> fn) public <U> CompletableFuture<U> thenComposeAsync(Function<? super T,? extends CompletionStage<U>> fn) public <U> CompletableFuture<U> thenComposeAsync(Function<? super T,? extends CompletionStage<U>> fn, Executor executor)示例:
@Test public void index6() throws ExecutionException, InterruptedException { CompletableFuture<Integer> completableFuture = CompletableFuture.supplyAsync(() -> 2) .thenCompose(integer -> CompletableFuture.supplyAsync(() -> integer + 1)); System.out.println(completableFuture.get()); }输出:
3任务的组合(不需等待上一步完成)
方法:
public CompletableFuture
示例:
@Test public void index7() throws ExecutionException, InterruptedException { CompletableFuture<Integer> completableFuture = CompletableFuture.supplyAsync(() -> 2) .thenCombine(CompletableFuture.supplyAsync(() -> 1), (x, y) -> x + y); System.out.println(completableFuture.get()); }输出:
3消费最先执行完毕的其中一个任务,不返回结果
方法:
public CompletableFuture<Void> acceptEither(CompletionStage<? extends T> other, Consumer<? super T> action) public CompletableFuture<Void> acceptEitherAsync(CompletionStage<? extends T> other, Consumer<? super T> action) public CompletableFuture<Void> acceptEitherAsync(CompletionStage<? extends T> other, Consumer<? super T> action, Executor executor)示例:
@Test public void index8() throws ExecutionException, InterruptedException { CompletableFuture<Void> completableFuture = CompletableFuture.supplyAsync(() -> { try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } return 2; }) .acceptEither(CompletableFuture.supplyAsync(() -> 1), System.out::println); System.out.println(completableFuture.get()); }输出:
1 null消费最先执行完毕的其中一个任务,并返回结果
方法:
public <U> CompletableFuture<U> applyToEither(CompletionStage<? extends T> other, Function<? super T,U> fn) public <U> CompletableFuture<U> applyToEitherAsync(CompletionStage<? extends T> other, Function<? super T,U> fn) public <U> CompletableFuture<U> applyToEitherAsync(CompletionStage<? extends T> other, Function<? super T,U> fn, Executor executor)示例:
@Test public void index9() throws ExecutionException, InterruptedException { CompletableFuture<Integer> completableFuture = CompletableFuture.supplyAsync(() -> { try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } return 2; }) .applyToEither(CompletableFuture.supplyAsync(() -> 1), x -> x + 10); System.out.println(completableFuture.get()); }输出:
11等待所有任务完成
方法:
public static CompletableFuture<Void> allOf(CompletableFuture<?>... cfs)示例:
@Test public void index10() throws ExecutionException, InterruptedException { CompletableFuture<Integer> completableFuture1 = CompletableFuture.supplyAsync(() -> { try { Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } return 1; }); CompletableFuture<Integer> completableFuture2 = CompletableFuture.supplyAsync(() -> 2); CompletableFuture<Void> completableFuture = CompletableFuture.allOf(completableFuture1, completableFuture2); System.out.println("waiting all task finish.."); System.out.println(completableFuture.get()); System.out.println("all task finish"); }输出:
waiting all task finish.. null all task finish返回最先完成的任务结果
方法:
public static CompletableFuture<Object> anyOf(CompletableFuture<?>... cfs)示例:
@Test public void index11() throws ExecutionException, InterruptedException { CompletableFuture<Integer> completableFuture1 = CompletableFuture.supplyAsync(() -> { try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } return 1; }); CompletableFuture<Integer> completableFuture2 = CompletableFuture.supplyAsync(() -> 2); CompletableFuture<Object> completableFuture = CompletableFuture.anyOf(completableFuture1, completableFuture2); System.out.println(completableFuture.get()); }输出:
2作者简介:
薛勤,公众号“代码艺术”的作者,就职于阿里巴巴,热衷于探索计算机世界的底层原理,个人在 Github@Ystcode 上拥有多个开源项目。
【原创稿件,合作站点转载请注明原文作者和出处为.com】