超详解matplotlib中的折线图方法plot()
目的超详
对最基本的折线图plot做详细的解读,为绘制其他类型的线图图形打好基础。plt.plot()的超详定义及调用
定义:
plt.plot(*args, scalex=True, scaley=True, data=None, **kwargs)调用:
plot([x], y, [fmt], *, data=None, **kwargs) plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)位置参数:
[x], y, [fmt]关键字传参:
*后面的参数x序列的不同类型
文本型的x序列
# data X = [8,3,5,t] # 会按顺序【0,1,2,3】被定位在x轴的刻度上 Y = [1,2,3,4] plt.plot(X,Y,marker = o,c=g) ax = plt.gca() print(x轴刻度:,plt.xticks()) #list xticklabels_lst = ax.get_xticklabels() print(-*70)x轴刻度:([0, 1, 2, 3], <a list of 4 Text xticklabel objects>)
----------------------------------------------------------------------
x轴刻度标签:[Text(0, 0, 8), Text(1, 0, 3), Text(2, 0, 5), Text(3, 0, t)]
数字型的x序列
# data X = [8,3,5,1] # 会按数字【8,3,线图5,1】被定位在x轴的刻度上 Y = [1,2,3,4] plt.plot(X,Y,marker = o,c=g) ax = plt.gca() print(x轴刻度:,plt.xticks()) # array xticklabels_lst = ax.get_xticklabels() print(-*70)x轴刻度:(array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.]), <a list of 10 Text xticklabel objects>)
----------------------------------------------------------------------
x轴刻度标签:[Text(0.0, 0, 0), Text(1.0, 0, 1), Text(2.0, 0, 2), Text(3.0, 0, 3), Text(4.0, 0, 4), Text(5.0, 0, 5), Text(6.0, 0, 6), Text(7.0, 0, 7), Text(8.0, 0, 8), Text(9.0, 0, 9)]
2种类型-2条线
# data X1 = [8,3,5,t] X2 = [8,3,5,1] Y = [1,2,3,4] plt.plot(X2,Y,marker = o,c=r) plt.plot(X1,Y,marker = o,c=g) ax = plt.gca() print(x轴刻度:,plt.xticks()) xticklabels_lst = ax.get_xticklabels() print(-*70)x轴刻度:([0, 1, 2, 3], <a list of 4 Text xticklabel objects>)
----------------------------------------------------------------------
x轴刻度标签:[Text(0, 0, 8), Text(1, 0, 3), Text(2, 0, 5), Text(3, 0, t)]
提供不同数量的位置参数
几种方式的调用
无参数
#返回一个空列表 plt.plot()[]
plot([x], y, [fmt], *, data=None, **kwargs) plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
1个参数
#提供一个数(点) plt.plot(4.5,marker=o)[<matplotlib.lines.Line2D at 0x7f6f0352f978>]
[<matplotlib.lines.Line2D at 0x7f6f0350d438>]
2个参数
自动解析位置参数的原则
(x,y)形式
# x/y 为序列 plt.plot([2,1,3],[0.5,2,2.5],marker=o)[<matplotlib.lines.Line2D at 0x7f6f034735c0>]
[<matplotlib.lines.Line2D at 0x7f6f03461b38>]
(y,fmt)形式
# plt.plot(2,z,marker = o) #Unrecognized character z in format string # y 为标量 plt.plot(2,r,marker = o)[<matplotlib.lines.Line2D at 0x7f6f033b7cf8>]
[<matplotlib.lines.Line2D at 0x7f6f033a1cf8>]
3个参数
([x],y,[fmt])形式
plt.plot([2,1,3],[0.5,2,2.5],p--g, # marker=o markersize = 15 )[<matplotlib.lines.Line2D at 0x7f6f0331e048>]
[<matplotlib.lines.Line2D at 0x7f6f03289390>]
绘图Line2D
仅画线:绘图的默认情况
默认样式:蓝色的【线】【无标记】
# marker = None 表示不做设置 plt.plot([2,2.5,1])[<matplotlib.lines.Line2D at 0x7f6f031f86a0>]
仅画标记
plt.plot([2,2.5,1],o)[<matplotlib.lines.Line2D at 0x7f6f03afcba8>]
画线+标记
plt.plot([2,2.5,1],o-)[<matplotlib.lines.Line2D at 0x7f6f031d62e8>]
[<matplotlib.lines.Line2D at 0x7f6f0317b128>]
fmt的网站模板组合顺序随意的?
6图合一及结论
# 6种组合 # [color][marker][line],3种任意组合为6种可能 # b :蓝色 # o: 圆圈标记 # --:虚线 fmt = [bo--,b--o,ob--,o--b,--bo,--ob] for i in range(len(fmt)): plt.subplot(2,3,i+1) plt.plot([2,1,3],fmt[i]) # 结论:[color][marker][line],每个都是超详可选的,每个属性可以选择写或者不写 # 而且与组合中它们所在的线图位置顺序无关fmt支持的【线】-line
Line Styles
==== character description ====
- solid line style -- dashed line style -. dash-dot line style : dotted line style
fmt支持的【标记】-marker
Markers
==== character description ====
. point marker , pixel marker \\\o\\\ circle marker v triangle_down marker ^ triangle_up marker < triangle_left marker > triangle_right marker 1 tri_down marker 2 tri_up marker 3 tri_left marker 4 tri_right marker s\\\ square marker p pentagon marker * star marker h hexagon1 marker H hexagon2 marker + plus marker x x marker D diamond marker d thin_diamond marker | vline marker _ hline marker
fmt支持的【颜色】-color
Colors
The supported color abbreviations are the single letter codes
==== character color ====
b blue g green r red c cyan m magenta y yellow k black w white
所有样式:标记、线、超详颜色参考大全
链接:https://www.kesci.com/home/project/5ea4e5da105d91002d506ac6
样式属性
线条的线图属性
# 包含:(颜色除外) # 线的样式、线的超详宽度 # linestyle or ls: { -, --, -., :, , } # linewidth or lw: float ls_lst = [-, --, -., :,] lw_lst = [1,3,5,7] for i in range(len(ls_lst)): plt.plot([1,2,3,4],[i+1]*4,ls_lst[i],lw = lw_lst[i])标记的属性
# 包含: marker: marker style #边框(颜色及边框粗细) markeredgecolor or mec: color markeredgewidth or mew: float #面颜色 markerfacecolor or mfc: color markerfacecoloralt or mfcalt: color #备用标记颜色 #标记的大小 markersize or ms: float markevery: None or int or (int, int) or slice or List[int] or float or (float, float) # linestyle = None 表示不做设置,以默认值方式 # linestyle = linestyle = none 表示无格式,线图无线条 plt.plot([4,超详2,1,3],linestyle = none, marker = o, markersize = 30, # edge markeredgecolor = r, markeredgewidth = 5, # face markerfacecolor = g, # markerfacecolor = none, # markerfacecolor = None, )[<matplotlib.lines.Line2D at 0x7f6f02f085c0>]
综合:带有空心圆标记的线条图
标记点是覆盖在线条的上面,位于上层 图层层次:[top] spines > marker > line > backgroud [bottom] spines:轴的源码下载线图4个边框 spines 将线条图围在里面 plt.plot([1,5,3,4], marker = o, markersize = 20, # edge markeredgecolor = r, markeredgewidth = 5, # face markerfacecolor = w, # 白色,与背景色相同,超详把线条覆盖着,营造空心的视觉效果 # markerfacecolor = none, # 无色,透明,会看到线条 # markerfacecolor = None, # 不设置,默认颜色 ) # markerfacecolor = , # 无法识别 # markerfacecolor = , # 无法识别[<matplotlib.lines.Line2D at 0x7f6f02e6e470>]
data关键字的使用
字典数据
#字典数据 d = { name:list(abcd),age:[22,20,18,27]} plt.plot(name,age,ddata = d)[<matplotlib.lines.Line2D at 0x7f6f02e52e48>]
DataFrame数据
#DataFrame数据 d = { name:list(abcd),age:[22,20,18,27]} df = pd.DataFrame(d) df name age 0 a 22 1 b 20 2 c 18 3 d 27 plt.plot(name,age,data = df)[<matplotlib.lines.Line2D at 0x7f6f02d7a940>]
总结
定义:
plt.plot(*args,scalex = True,scaley = True,data = None ,**kwargs)调用:
plot([x], y, [fmt], *, data=None, **kwargs) plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)x,y,fmt均不能使用关键字传参
推荐使用:
plt.plot(x,y,fmt) 多组数据时,再次调用 plt.plot(x2,y2,fmt2) 画第2条线即可... 默认样式:蓝色的【线】+【无标记】,即无标记的线 可使用fmt来快捷控制线条的基本属性:颜色、线、标记 [color][marker][line] fmt与关键字属性可混合使用,当两者有冲突时,以关键字的为准。 对于已有的带标签的数据如df,可使用 plt.plot(columns_name1,columns_name2,data = df)